Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Extensive transcriptome changes during seasonal leaf senescence in field-grown black cottonwood (Populus trichocarpa Nisqually-1).

Identifieur interne : 000402 ( Main/Exploration ); précédent : 000401; suivant : 000403

Extensive transcriptome changes during seasonal leaf senescence in field-grown black cottonwood (Populus trichocarpa Nisqually-1).

Auteurs : Haiwei Lu [États-Unis] ; Michael I. Gordon [États-Unis] ; Vindhya Amarasinghe [États-Unis] ; Steven H. Strauss [États-Unis]

Source :

RBID : pubmed:32313054

Abstract

To better understand the molecular control of leaf senescence, we examined transcriptome changes during seasonal leaf senescence in Populus trichocarpa Nisqually-1, the Populus reference genome, growing in its natural habitat. Using monthly (from May to October) transcriptomes for three years (2009, 2015, and 2016), we identified 17,974 differentially expressed genes (DEGs; false discovery rate <0.05; log-fold change cutoff = 0) from 36,007 expressed Populus gene models. A total of 14,415 DEGs were directly related to transitions between four major developmental phases - growth, senescence initiation, reorganization, and senescence termination. These DEGs were significantly (p < 0.05) enriched in 279 gene ontology (GO) terms, including those related to photosynthesis, metabolic process, catalytic activity, protein phosphorylation, kinase activity, pollination, and transport. Also, there were 881 differentially expressed transcription factor (TF) genes from 54 TF families, notably bHLH, MYB, ERF, MYB-related, NAC, and WRKY. We also examined 28 DEGs known as alternative splicing (AS) factors that regulate AS process, and found evidence for a reduced level of AS activity during leaf senescence. Furthermore, we were able to identify a number of promoter sequence motifs associated with leaf senescence. This work provides a comprehensive resource for identification of genes involved in seasonal leaf senescence in trees, and informs efforts to explore the conservation and divergence of molecular mechanisms underlying leaf senescence between annual and perennial species.

DOI: 10.1038/s41598-020-63372-2
PubMed: 32313054
PubMed Central: PMC7170949


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Extensive transcriptome changes during seasonal leaf senescence in field-grown black cottonwood (Populus trichocarpa Nisqually-1).</title>
<author>
<name sortKey="Lu, Haiwei" sort="Lu, Haiwei" uniqKey="Lu H" first="Haiwei" last="Lu">Haiwei Lu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gordon, Michael I" sort="Gordon, Michael I" uniqKey="Gordon M" first="Michael I" last="Gordon">Michael I. Gordon</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Amarasinghe, Vindhya" sort="Amarasinghe, Vindhya" uniqKey="Amarasinghe V" first="Vindhya" last="Amarasinghe">Vindhya Amarasinghe</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA. Steve.Strauss@oregonstate.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32313054</idno>
<idno type="pmid">32313054</idno>
<idno type="doi">10.1038/s41598-020-63372-2</idno>
<idno type="pmc">PMC7170949</idno>
<idno type="wicri:Area/Main/Corpus">000342</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000342</idno>
<idno type="wicri:Area/Main/Curation">000342</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000342</idno>
<idno type="wicri:Area/Main/Exploration">000342</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Extensive transcriptome changes during seasonal leaf senescence in field-grown black cottonwood (Populus trichocarpa Nisqually-1).</title>
<author>
<name sortKey="Lu, Haiwei" sort="Lu, Haiwei" uniqKey="Lu H" first="Haiwei" last="Lu">Haiwei Lu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gordon, Michael I" sort="Gordon, Michael I" uniqKey="Gordon M" first="Michael I" last="Gordon">Michael I. Gordon</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Amarasinghe, Vindhya" sort="Amarasinghe, Vindhya" uniqKey="Amarasinghe V" first="Vindhya" last="Amarasinghe">Vindhya Amarasinghe</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA. Steve.Strauss@oregonstate.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To better understand the molecular control of leaf senescence, we examined transcriptome changes during seasonal leaf senescence in Populus trichocarpa Nisqually-1, the Populus reference genome, growing in its natural habitat. Using monthly (from May to October) transcriptomes for three years (2009, 2015, and 2016), we identified 17,974 differentially expressed genes (DEGs; false discovery rate <0.05; log-fold change cutoff = 0) from 36,007 expressed Populus gene models. A total of 14,415 DEGs were directly related to transitions between four major developmental phases - growth, senescence initiation, reorganization, and senescence termination. These DEGs were significantly (p < 0.05) enriched in 279 gene ontology (GO) terms, including those related to photosynthesis, metabolic process, catalytic activity, protein phosphorylation, kinase activity, pollination, and transport. Also, there were 881 differentially expressed transcription factor (TF) genes from 54 TF families, notably bHLH, MYB, ERF, MYB-related, NAC, and WRKY. We also examined 28 DEGs known as alternative splicing (AS) factors that regulate AS process, and found evidence for a reduced level of AS activity during leaf senescence. Furthermore, we were able to identify a number of promoter sequence motifs associated with leaf senescence. This work provides a comprehensive resource for identification of genes involved in seasonal leaf senescence in trees, and informs efforts to explore the conservation and divergence of molecular mechanisms underlying leaf senescence between annual and perennial species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32313054</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>04</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Extensive transcriptome changes during seasonal leaf senescence in field-grown black cottonwood (Populus trichocarpa Nisqually-1).</ArticleTitle>
<Pagination>
<MedlinePgn>6581</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-020-63372-2</ELocationID>
<Abstract>
<AbstractText>To better understand the molecular control of leaf senescence, we examined transcriptome changes during seasonal leaf senescence in Populus trichocarpa Nisqually-1, the Populus reference genome, growing in its natural habitat. Using monthly (from May to October) transcriptomes for three years (2009, 2015, and 2016), we identified 17,974 differentially expressed genes (DEGs; false discovery rate <0.05; log-fold change cutoff = 0) from 36,007 expressed Populus gene models. A total of 14,415 DEGs were directly related to transitions between four major developmental phases - growth, senescence initiation, reorganization, and senescence termination. These DEGs were significantly (p < 0.05) enriched in 279 gene ontology (GO) terms, including those related to photosynthesis, metabolic process, catalytic activity, protein phosphorylation, kinase activity, pollination, and transport. Also, there were 881 differentially expressed transcription factor (TF) genes from 54 TF families, notably bHLH, MYB, ERF, MYB-related, NAC, and WRKY. We also examined 28 DEGs known as alternative splicing (AS) factors that regulate AS process, and found evidence for a reduced level of AS activity during leaf senescence. Furthermore, we were able to identify a number of promoter sequence motifs associated with leaf senescence. This work provides a comprehensive resource for identification of genes involved in seasonal leaf senescence in trees, and informs efforts to explore the conservation and divergence of molecular mechanisms underlying leaf senescence between annual and perennial species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Haiwei</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gordon</LastName>
<ForeName>Michael I</ForeName>
<Initials>MI</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Amarasinghe</LastName>
<ForeName>Vindhya</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Strauss</LastName>
<ForeName>Steven H</ForeName>
<Initials>SH</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA. Steve.Strauss@oregonstate.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>08</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32313054</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-020-63372-2</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-020-63372-2</ArticleId>
<ArticleId IdType="pmc">PMC7170949</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Plant Sci. 2008 May;13(5):216-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18328774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 May;171(1):452-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26966169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 May;42(4):567-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15860015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2013 Nov 1;126(Pt 21):4823-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24144694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2015 Mar;33(3):290-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25690850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):275-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Nov;212(3):563-570</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27716940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2015 Apr;12(4):357-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25751142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Jan;20(1):45-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19858364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 May;78(4):591-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24580679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D1040-D1045</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27924042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Dec 22;9(12):e115617</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25532107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Aug 14;5:4636</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25119965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Dec 17;6:989</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26734012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W71-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Jun;8(6):272-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12818661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2016 Jun 6;9(6):813-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27174403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:115-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17177638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Jul;2(4):675-687</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Feb;14(2):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26015295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2007 Jan;5(1):192-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17207268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2008 Dec 9;18(23):1815-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19062289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2017 Feb 20;18(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28230724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2008;326:219-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18630755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2015 May 22;16:169</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25994840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Nov;124(3):1305-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11080306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 May;37(5):501-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15806101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Oct;169(2):914-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26276844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Mar;23(3):873-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21447789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Apr;66(1):94-116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21443626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Sep 23;6(9):e230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18816164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Oct;3(5):423-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11019812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Mar;35(3):644-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21988545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 May 01;15:326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24884892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2015 Jan;56(1):163-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25392065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2011 Sep;9(7):759-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21265995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2015 Oct;27:77-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26190740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2009 Jan;10(1):57-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19015660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2019 Apr 29;70:347-376</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30811218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2003 May;20(5):735-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12679534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(4):R24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15059257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2018 Jan;162(1):123-134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28591431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2015 Feb 12;15:43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25849479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Aug;13(8):1779-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11487692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Nov 25;5:650</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25505475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2018 Jul 6;36(7):566-569</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29979655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Aug;15(8):1749-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12897250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(2):R24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17324271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Jun 23;19(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29937503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jun 14;11(6):e0157370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27300480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jul 3;45(W1):W122-W129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28472432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jul 13;475(7356):398-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21753751</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Oregon</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Oregon">
<name sortKey="Lu, Haiwei" sort="Lu, Haiwei" uniqKey="Lu H" first="Haiwei" last="Lu">Haiwei Lu</name>
</region>
<name sortKey="Amarasinghe, Vindhya" sort="Amarasinghe, Vindhya" uniqKey="Amarasinghe V" first="Vindhya" last="Amarasinghe">Vindhya Amarasinghe</name>
<name sortKey="Gordon, Michael I" sort="Gordon, Michael I" uniqKey="Gordon M" first="Michael I" last="Gordon">Michael I. Gordon</name>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000402 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000402 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32313054
   |texte=   Extensive transcriptome changes during seasonal leaf senescence in field-grown black cottonwood (Populus trichocarpa Nisqually-1).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32313054" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020